Муниципальное бюджетное общеобразовательное учреждение

Заларинская основная общеобразовательная школа

«Рассмотрено»

«Согласовано»

«Утверждено»

на заседании МО

Зам. директора по УВР

Директор школы

учителей

OT

Багинская Н.В.

Бендик И.В.

Протокол № _/_

May_ «29» abrycma

20 18 r. «29» abyema

2018 г.

«28» 08 20 18 r.

Рабочая программа по информатике

для 5-6 класса

(уровень: общеобразовательный)

Учитель Багинская Нина Васильевна

Рабочая программа по информатике для 5-6 класса составлена в соответствии с требованиями Федерального государственного образовательного стандарта основного общего образования (ФГОС ООО) с учетом примерной основной образовательной программы основного общего образования. Программа отражает требования к результатам освоения основной образовательной программы (личностным, метапредметным, предметным); основные подходы к развитию и формированию универсальных учебных действий (УУД) для основного общего образования. В ней соблюдается преемственность с федеральным государственным образовательным стандартом начального общего образования; учитываются возрастные и психологические особенности школьников, обучающихся на ступени основного общего образования, учитываются межпредметные связи.

Количество часов на год всего: 5 класс – 34 ч, 6 класс – 34 ч.

В неделю: 5 класс - 1 ч., 6 класс - 1ч.

Изучение информатики в 5-6 классе вносит значительный вклад в достижение **главных целей основного общего образования**, способствует:

- формирование общеучебных умений и способов интеллектуальной деятельности на основе методов информатики;
- формирование у учащихся готовности к использованию средств ИКТ в информационно-учебной деятельности для решения учебных задач и саморазвития;
 - усиление культурологической составляющей школьного образования;
 - пропедевтика понятий базового курса школьной информатики;
- развитие познавательных, интеллектуальных и творческих способностей учащихся.
- показать учащимся роль информации и информационных процессов в их жизни и в окружающем мире;
- организовать работу в виртуальных лабораториях, направленную на овладение первичными навыками исследовательской деятельности, получение опыта принятия решений и управления объектами с помощью составленных для них алгоритмов;
- организовать компьютерный практикум, ориентированный на: формирование умений использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации (работа с текстом и графикой в среде соответствующих редакторов); овладение способами и методами освоения новых инструментальных средств; формирование умений и навыков самостоятельной работы; стремление использовать полученные знания в процессе обучения другим предметам и в жизни;
- создать условия для овладения основами продуктивного взаимодействия и сотрудничества со сверстниками и взрослыми: умения правильно, четко и однозначно формулировать мысль в понятной собеседнику форме; умения выступать перед аудиторией, представляя ей результаты своей работы с помощью средств ИКТ.

Общая характеристика учебного предмета

Информатика — это естественнонаучная дисциплина о закономерностях протекания информационных процессов в системах различной природы, а также о методах и средствах их автоматизации. Многие положения, развиваемые информатикой, рассматриваются как основа создания и использования информационных и коммуникационных технологий — одного из наиболее значимых технологических достижений современной цивилизации. Вместе с

математикой, физикой, химией, биологией курс информатики закладывает основы естественнонаучного мировоззрения.

Информатика имеет большое и все возрастающее число междисциплинарных связей, причем как на уровне понятийного аппарата, так и на уровне инструментария. Многие предметные знания и способы деятельности (включая использование средств ИКТ), освоенные обучающимися на базе информатики, находят применение как в рамках образовательного процесса при изучении других предметных областей, так и в иных жизненных ситуациях, становятся значимыми для формирования качеств личности, т.е. ориентированы на формирование метапредметных и личностных результатов. На протяжении всего периода становления школьной информатики в ней накапливался опыт формирования образовательных результатов, которые в настоящее время принято называть современными образовательными результатами. Одной из основных черт нашего времени является всевозрастающая изменчивость окружающего мира. В этих условиях велика роль фундаментального образования, обеспечивающего профессиональную мобильность человека, готовность его к освоению новых технологий, в том числе, информационных. Необходимость подготовки личности к быстро наступающим переменам в обществе требует развития разнообразных форм мышления, формирования у учащихся умений организации собственной учебной деятельности, их ориентации на деятельностную жизненную позицию.

В содержании курса информатики основной школы целесообразно сделать акцент на изучении фундаментальных основ информатики, формировании информационной культуры, развитии алгоритмического мышления, реализовать в полной мере общеобразовательный потенциал этого курса.

Курс информатики основной школы является частью непрерывного курса информатики, который включает в себя также пропедевтический курс в начальной школе и обучение информатике в старших классах (на базовом или профильном уровне). В настоящей программе учтено, что сегодня, в соответствии с Федеральным государственным стандартом начального образования, учащиеся к концу начальной школы должны обладать ИКТ-компетентностью, достаточной для дальнейшего обучения. Далее, в основной школе, начиная с 5-го класса, они закрепляют полученные технические навыки и развивают их в рамках применения при изучении всех предметов. Курс информатики основной школы, опирается на опыт постоянного применения ИКТ, уже имеющийся у учащихся, дает теоретическое осмысление, интерпретацию и обобщение этого опыта.

Личностные, метапредметные и предметные результаты освоения информатики

Личностные результаты — это сформировавшаяся в образовательном процессе система ценностных отношений учащихся к себе, другим участникам образовательного процесса, самому образовательному процессу, объектам познания, результатам образовательной деятельности. Основными личностными результатами, формируемыми при изучении информатики в основной школе, являются:

- наличие представлений об информации как важнейшем стратегическом ресурсе развития личности, государства, общества;
- понимание роли информационных процессов в современном мире;
- владение первичными навыками анализа и критичной оценки получаемой информации;
- ответственное отношение к информации с учетом правовых и этических аспектов ее распространения;
- развитие чувства личной ответственности за качество окружающей информационной среды;

- способность увязать учебное содержание с собственным жизненным опытом, понять значимость подготовки в области информатики и ИКТ в условиях развития информационного общества;
- готовность к повышению своего образовательного уровня и продолжению обучения с использованием средств и методов информатики и ИКТ;
- способность и готовность к общению и сотрудничеству со сверстниками и взрослыми в процессе образовательной, общественно-полезной, учебно-исследовательской, творческой деятельности;
- способность и готовность к принятию ценностей здорового образа жизни за счет
- знания основных гигиенических, эргономических и технических условий безопасной эксплуатации средств ИКТ.

Метапредметные результаты – освоенные обучающимися на базе одного, нескольких или всех учебных предметов способы деятельности, применимые как в рамках образовательного процесса, так и в других жизненных ситуациях.

Основными метапредметными результатами, формируемыми при изучении информатики в основной школе, являются:

- владение общепредметными понятиями «объект», «система», «модель», «алгоритм», «исполнитель» и др.;
- владение информационно-логическими умениями: определять понятия, создавать обобщения, устанавливать аналогии, классифицировать, самостоятельно выбирать основания и критерии для классификации, устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение (индуктивное, дедуктивное и по аналогии) и делать выводы;
- владение умениями самостоятельно планировать пути достижения целей;
- соотносить свои действия с планируемыми результатами, осуществлять контроль своей деятельности, определять способы действий в рамках предложенных условий, корректировать свои действия в соответствии с изменяющейся ситуацией; оценивать правильность выполнения учебной задачи;
- владение основами самоконтроля, самооценки, принятия решений и осуществления осознанного выбора в учебной и познавательной деятельности;
- владение основными универсальными умениями информационного характера:
- постановка и формулирование проблемы; поиск и выделение необходимой информации, применение методов информационного поиска; структурирование и визуализация информации; выбор наиболее эффективных способов решения задач в зависимости от конкретных условий; самостоятельное создание алгоритмов деятельности при решении проблем творческого и поискового характера;
- владение информационным моделированием как основным методом приобретения знаний: умение преобразовывать объект из чувственной формы в пространственно-графическую или знаково-символическую модель;
- умение строить разнообразные информационные структуры для описания объектов;
- умение «читать» таблицы, графики, диаграммы, схемы и т.д., самостоятельно
- перекодировать информацию из одной знаковой системы в другую;
- умение выбирать форму представления информации в зависимости от стоящей задачи, проверять адекватность модели объекту и цели моделирования.

ИКТ-компетентность — широкий спектр умений и навыков использования средств информационных и коммуникационных технологий для сбора, хранения, преобразования и передачи различных видов информации, навыки создания личного информационного пространства (обращение с устройствами ИКТ; фиксация изображений и звуков; создание письменных сообщений; создание графических объектов; создание музыкальных и звуковых сообщений; создание, восприятие и использование гипермедиасообщений; коммуникация и социальное взаимодействие; поиск и организация хранения информации; анализ информации).

Предметные результаты включают в себя: освоенные обучающимися в ходе изучения учебного предмета умения специфические для данной предметной области, виды деятельности по получению нового знания в рамках учебного предмета, его преобразованию и применению в учебных, учебно-проектных и социально-проектных ситуациях, формирование научного типа мышления, научных представлений о ключевых теориях, типах и видах отношений, владение научной терминологией, ключевыми понятиями, методами и приемами.

В соответствии с федеральным государственным образовательным стандартом общего образования основные предметные результаты изучения информатики в основной школе отражают:

- формирование информационной и алгоритмической культуры;
- формирование представления о компьютере как универсальном устройстве обработки
- информации; развитие основных навыков и умений использования компьютерных устройств;
- формирование представления об основных изучаемых понятиях: информация, алгоритм, модель и их свойствах;
- развитие алгоритмического мышления, необходимого для профессиональной деятельности в современном обществе; развитие умений составить и записать
- алгоритм для конкретного исполнителя; формирование знаний об алгоритмических конструкциях, логических значениях и операциях; знакомство с одним из языков программирования и основными алгоритмическими структурами линейной, условной и циклической;
- формирование умений формализации и структурирования информации, умения выбирать способ представления данных в соответствии с поставленной задачей —
- таблицы, схемы, графики, диаграммы, с использованием соответствующих программных средств обработки данных;
- формирование навыков и умений безопасного и целесообразного поведения при работе с компьютерными программами и в Интернете, умения соблюдать нормы информационной этики и права.

Содержание предмета информатики для 5-6 классов

Структура содержания курса информатики для 5-6 классов определена следующими укрупненными блоками (разделами):

Блок 1. Информация вокруг нас

Информация и информации. Как человек получает информацию. Виды информации по способу получения. Хранение информации. Память человека и память человечества. Носители информации. Передача информации. Источник, канал, приёмник. Примеры передачи информации. Электронная почта. Код, кодирование информации. Способы кодирования информации. Метод координат. Формы представления информации. Текст как форма представления информации. Наглядные формы

представления информации. Обработка информации. Разнообразие задач обработки информации. Изменение формы представления информации. Систематизация информации. Поиск информации. Получение новой информации. Преобразование информации по заданным правилам. Черные ящики. Преобразование информации путем рассуждений. Разработка плана действий и его запись. Задачи на переливания. Задачи на переправы. Информация и знания. Чувственное познание окружающего мира. Абстрактное мышление. Понятие как форма мышления.

Блок 2. Информационные технологии

Компьютер – универсальная машина для работы с информацией. Техника безопасности и организация рабочего места. Основные устройства компьютера, в том числе устройства для ввода информации (текста, звука, изображения) в компьютер. Компьютерные объекты. Программы и документы. Файлы и папки. Основные правила именования файлов. Элементы пользовательского интерфейса: рабочий стол; панель задач. Мышь, указатель мыши, действия с мышью. Управление компьютером с помощью мыши. Компьютерные меню. Главное меню. Запуск программ. Окно программы и его компоненты. Диалоговые окна. Основные элементы управления, имеющиеся в диалоговых окнах. Ввод информации в память компьютера. Клавиатура. Группы клавиш. Основная позиция пальцев на клавиатуре. Текстовый редактор. Правила ввода текста. Слово, предложение, абзац. Приёмы редактирования (вставка, удаление и замена символов). Фрагмент. Перемещение и удаление фрагментов. Буфер обмена. Копирование фрагментов. Проверка правописания, расстановка переносов. Форматирование символов (шрифт, размер, начертание, цвет). Форматирование абзацев (выравнивание, отступ первой строки, междустрочный интервал и др.). Создание и форматирование списков. Вставка в документ таблицы, ее форматирование и заполнение данными. Компьютерная графика. Простейший графический редактор. Инструменты графического редактора. Инструменты создания простейших графических объектов. Исправление ошибок и внесение изменений. Работа с фрагментами: удаление, перемещение, копирование. Преобразование фрагментов. Устройства ввода графической информации. Мультимедийная презентация. Описание последовательно развивающихся событий (сюжет). Анимация. Возможности настройки анимации в редакторе презентаций. Создание эффекта движения с помощью смены последовательности рисунков.

Блок 3. Информационное моделирование

Объекты и их имена. Признаки объектов: свойства, действия, поведение, состояния. Отношения объектов. Разновидности объектов и их классификация. Состав объектов. Системы объектов. Модели объектов и их назначение. Информационные модели. Словесные информационные модели. Простейшие математические модели. Табличные информационные модели. Структура и правила оформления таблицы. Простые таблицы. Табличное решение логических задач. Вычислительные таблицы. Графики и диаграммы. Наглядное представление о соотношении величин. Визуализация многорядных данных. Многообразие схем. Информационные модели на графах. Деревья.

Блок 4. Алгоритмика

Понятие исполнителя. Неформальные и формальные исполнители. Учебные исполнители (Черепаха, Кузнечик, Водолей и др.) как примеры формальных исполнителей. Их назначение, среда, режим работы, система команд. Управление исполнителями с помощью команд и их последовательностей. Что такое алгоритм. Различные формы записи алгоритмов (нумерованный список, таблица, блок-схема). Примеры линейных алгоритмов, алгоритмов с ветвлениями и повторениями (в повседневной жизни, в литературных произведениях, на уроках

математики и т.д.). Составление алгоритмов (линейных, с ветвлениями и циклами) для управления исполнителями Чертёжник, Водолей и др.

Учебно-тематический план

No	Название темы	Количество часов	5 класс	6 класс
1.	Информация вокруг нас	14	12	2
2.	Компьютер	7	5	2
3.	Подготовка текстов на	10	8	2
	Компьютере			
4.	Компьютерная графика	5	3	2
5.	Создание мультимедийных	6	4	2
	Объектов			
6.	Объекты и системы	5		5
7.	Информационные модели	11	1	10
8.	Алгоритмика	8		8
9.	Резерв и повторение	2	1	1
	Итого	68	34	34

Планируемые результаты изучения информатики в 5-6 классах

Планируемые результаты освоения обучающимися основной образовательной программы основного общего образования уточняют и конкретизируют общее понимание личностных, метапредметных и предметных результатов как с позиции организации их достижения в образовательном процессе, так и с позиции оценки достижения этих результатов.

Планируемые результаты сформулированы к каждому разделу учебной программы.

Планируемые результаты, характеризующие систему учебных действий в отношении опорного учебного материала, размещены в рубрике «Выпускник научится...». Они показывают, какой уровень освоения опорного учебного материала ожидается от выпускника. Эти результаты потенциально достигаемы большинством учащихся и выносятся на итоговую оценку как задания базового уровня (исполнительская компетентность) или задания повышенного уровня (зона ближайшего развития).

Планируемые результаты, характеризующие систему учебных действий в отношении знаний, умений, навыков, расширяющих и углубляющих опорную систему, размещены в рубрике «Выпускник получит возможность научиться ...». Эти результаты достигаются отдельными мотивированными и способными учащимися; они не отрабатываются со всеми группами учащихся в повседневной практике, но могут включаться в материалы итогового контроля.

Информационное моделирование Выпускник научится:

- понимать сущность понятий «модель», «информационная модель»;
- различать натурные и информационные модели, приводить их примеры;
- «читать» информационные модели (простые таблицы, круговые и столбиковые диаграммы, схемы и др.), встречающиеся в повседневной жизни;
- перекодировать информацию из одной пространственно-графической или знаковосимволической формы в другую, в том числе использовать графическое представление (визуализацию) числовой информации;
- строить простые информационные модели объектов из различных предметных областей. Ученик получит возможность:

- сформировать начальные представления о назначении и области применения моделей; о моделировании как методе научного познания;
- приводить примеры образных, знаковых и смешанных информационных моделей;
- познакомится с правилами построения табличных моделей, схем, графов, деревьев;
- выбирать форму представления данных (таблица, схема, график, диаграмма, граф, дерево) в соответствии с поставленной задачей.

Алгоритмика

Выпускник научится:

- понимать смысл понятия «алгоритм», приводить примеры алгоритмов;
- понимать термины «исполнитель», «формальный исполнитель», «среда исполнителя», «система команд исполнителя»; приводить примеры формальных и неформальных исполнителей;
- осуществлять управление имеющимся формальным исполнителем;
- понимать правила записи и выполнения алгоритмов, содержащих алгоритмические конструкции «следование», «ветвление», «цикл»;
- подбирать алгоритмическую конструкцию, соответствующую заданной ситуации;
- исполнять линейный алгоритм для формального исполнителя с заданной системой команд;
- разрабатывать план действий для решения задач на переправы, переливания и пр.; Выпускник получит возможность:
- исполнять алгоритмы, содержащие ветвления и повторения, для формального исполнителя с заданной системой команд;
- по данному алгоритму определять, для решения какой задачи он предназначен;
- разрабатывать в среде формального исполнителя короткие алгоритмы, содержащие базовые алгоритмические конструкции и вспомогательные алгоритмы.

Особенности оценки предметных результатов обучения

Система оценки предметных результатов освоения учебных программ с учетом уровневого подхода, предполагает выделение базового уровня достижений как точки отсчета при построении всей системы оценки и организации индивидуальной работы с обучающимися.

Реальные достижения обучающихся могут соответствовать базовому уровню, а могут отличаться от него как в сторону превышения, так и в сторону недостижения.

Для описания достижений обучающихся целесообразно установить пять уровней. Базовый уровень достижений — уровень, который демонстрирует освоение учебных действий с опорной системой знаний в рамках выделенных задач. Овладение базовым уровнем является достаточным для продолжения обучения на следующей ступени образования, но не по профильному направлению. Достижению базового уровня соответствует отметка «удовлетворительно» (или отметка «3», отметка «зачтено»).

Превышение базового уровня свидетельствует об усвоении опорной системы знаний на уровне осознанного произвольного овладения учебными действиями, а также о кругозоре, широте (или избирательности) интересов. Уровни достижения планируемых результатов, превышающие базовый, можно определить, как:

- 1) повышенный уровень достижения планируемых результатов, отметка «хорошо» (отметка «4»);
- 2) высокий уровень достижения планируемых результатов, отметка «отлично» (отметка «5»).

Повышенный и высокий уровни достижения отличаются по полноте освоения планируемых результатов, уровню овладения учебными действиями и сформированностью интересов к данной предметной области.

Для описания подготовки учащихся, уровень достижений которых ниже базового, целесообразно выделить также два уровня:

- 1) пониженный уровень достижений, отметка «неудовлетворительно» (отметка «2»);
- 2) низкий уровень достижений, отметка «плохо» (отметка «2»).

Недостижение базового уровня (пониженный и низкий уровни достижений) фиксируется в зависимости от объема и уровня освоенного и неосвоенного содержания предмета.

Решение о достижении или недостижении планируемых результатов или об освоении или неосвоении учебного материала принимается на основе результатов выполнения заданий базового уровня. Критерий достижения/освоения учебного материала можно рассматривать как выполнение не менее 50 % заданий базового уровня или получения 50 % от максимального балла за выполнение заданий базового уровня.

Тематический контроль осуществляется по завершении крупного блока (темы). Он позволяет оценить знания и умения учащихся, полученные в ходе достаточно продолжительного периода работы. **Итоговый** контроль осуществляется по завершении каждого года обучения.

В качестве одной из основных форм контроля рассматривается тестирование. Для того чтобы настроить школьников на вдумчивую работу с тестами, важно им объяснить правила, которых мы рекомендуем придерживаться при оценивании:

- за каждый правильный ответ начисляется 1 балл;
- за каждый ошибочный ответ начисляется штраф в 1 балл;
- за вопрос, оставленный без ответа (пропущенный вопрос), ничего не начисляется.

Такой подход позволяет добиться вдумчивого отношения к тестированию, позволяет сформировать у школьников навыки самооценки и ответственного отношения к собственному выбору. Тем не менее, учитель может отказаться от начисления штрафных баллов, особенно на начальном этапе тестирования.

При выставлении руководствуются следующими общепринятыми соотношениями:

```
40-59% — «3»;
65-79% — «4»;
80-100% — «5».
```

По усмотрению учителя эти требования могут быть снижены. Особенно внимательно следует относиться к «пограничным» ситуациям, когда один балл определяет «судьбу» оценки, а иногда и ученика. В таких случаях следует внимательно проанализировать ошибочные ответы и, по возможности, принять решение в пользу ученика. Важно создать обстановку взаимопонимания и сотрудничества, сняв излишнее эмоциональное напряжение, возникающее во время тестирования.

В 5-6 классе используется несколько различных форм контроля: тестирование; контрольная работа на опросном листе; разноуровневая контрольная работа.

Контрольные работы на опросном листе содержат условия заданий и предусматривают места для их выполнения. В зависимости от временных ресурсов и подготовленности учеников учитель может уменьшить число обязательных заданий, переведя часть из них в разряд дополнительных, выполнение которых поощряется еще одной оценкой.